PTS övningsprov

Kan någon hjälpa mig att förstå vad jag håller på med?

PTS Fråga: 3/1/1:593

Frågan lyder:
"Du har ett antal kondensatorer med värdet 10 mikrofarad (uF) men behöver en med 22,5 uF. Hur kan du koppla för att få fram det önskade värdet?"
Rätt svar är:
"Två parallellkopplade kondensatorer kopplas parallellt med ytterligare fyra seriekopplade kondensatorer"

Kan någon vänlig själ rita upp hur en sådan koppling ser ut?
Jag har precis börjat plugga på egen hand och känner mig helt tappad när det gäller komponenter och kopplingar.
Jag vet inte hur jag skall räkna när jag inte förstår hur kopplingen ska se ut.

Tack på förhand!
 

SM0UAN

Well-Known Member
Vid parallellkoppling adderas kondingarnas värden. Att koppla två st 10 µF parallellt ger 20 µF. Då skulle du behöva en konding ytterligare, på 2,5 µF för att komma till rätt värde. Det har du inte i exemplet, men med kondingar erhålls ett värde för seriekoppling, som innebär halvering vid två lika kondingar efter varandra. Två 10 µF efter varandra, motsvarar en konding på 5µF. Med två sådana grupper efter varandra, dvs fyra stycken 10 µF efter varandra, får du 2,5 µF. Denna sista grupp kopplas parallellt med de två första (parallellkopplade kondingarna) och då adderas de sista 2,5 µF till de befintliga 20 µF. = 22,5 µF.

Formeln för seriekoppling är Cs = (C1 x C2)/(C1 + C2). Med lika värden blir det en halvering vid seriekoppling. Parallellkppling är Cp = C1 + C2.
 
Last edited:

SM0AOM

Well-Known Member
Tycker inte att det är direkt förvillande.

Frågan avser sannolikt att också pröva tentandens förståelse för att det är lämpligt att
reducera nät till minsta antalet komponenter.

I ett extremfall kan man tänka sig att ett svarsalternativ kunde vara att man först ska seriekoppla 2 kondensatorer och sedan tar 4 av dessa och parallellkopplar dem, för att sedan koppla in ytterligare 4 seriekopplade parallellt.

Då har man gjort av med 12 kondensatorer och får samma totalkapacitans som med 6, och dessutom utan att höja tillåten driftspänning.

Med lite förståelse för kretselektronik ser man det lämpliga i att koppla så att antalet använda komponenter minimeras.
 

SM4FPD

Well-Known Member
När behöver man 22,5 uF?
Kondingar i fråga har en tolerans på +-10 % typiskt.
Frågan borde ha ställt med äpplen och som en fråga för de som pysslar med IQ tester istället, dvs helt ointressant för verkliga livet.
Förr var frågan sådan att man skulle visa om man förstod vad som händer vid parallell respektive seriekoppling av komponenter.
Frågan verkar vara en teortisk fråga skapd utan någon som helst kunskap om verklig livet.
Ovanligt dum fråga

SM4FPD
 

SM6OID

Well-Known Member
Hej!
Håller med AOM, här handlar det om att titta in i huvudet på den som skall räkna ut svaret.
Sättet att lösa uppgiften avslöjar mycket.

Å andra sidan så har FPD en poäng i att hur ofta behöver man just den kapacitansen, men det är ju en helt annan fråga...
 

SM0AOM

Well-Known Member
Nu är det så att kunskap om, och förståelse för, serie och parallellkoppling av kretselement ingår i kraven för HAREC.

I KonCEPT-boken finns detta utrett i ganska stor detalj på sidan 82 och framåt. Relationerna i båda fallen är härledda ur Kirchhoffs spänningslag och strömlag, vilka man också förväntas känna till.

Jag skulle föreslå att göra de tyska teoriproven för att få en känsla för hur en
riktig HAREC-examination ser ut...
 
Last edited:
View attachment 8763
Två parallelkoppllade 10µF kondensatorer = 20µF
Fyra seriekopplade 10µF kondensatorer = 2.5µF
20µF parallellt med 2.5µF = 22.5µF
Tack! Det här är precis vad jag efterfågade.
Jag har ibland svårt med läsförståelse när det gäller att i huvudet omvandla text och siffror till bilder.
Det här var till stor hjälp, nu "trillade poletten ner". Tack så mycket :)
 
Vid parallellkoppling adderas kondingarnas värden. Att koppla två st 10 µF parallellt ger 20 µF. Då skulle du behöva en konding ytterligare, på 2,5 µF för att komma till rätt värde. Det har du inte i exemplet, men med kondingar erhålls ett värde för seriekoppling, som innebär halvering vid två lika kondingar efter varandra. Två 10 µF efter varandra, motsvarar en konding på 5µF. Med två sådana grupper efter varandra, dvs fyra stycken 10 µF efter varandra, får du 2,5 µF. Denna sista grupp kopplas parallellt med de två första (parallellkopplade kondingarna) och då adderas de sista 2,5 µF till de befintliga 20 µF. = 22,5 µF.

Formeln för seriekoppling är Cs = (C1 x C2)/(C1 + C2). Med lika värden blir det en halvering vid seriekoppling. Parallellkppling är Cp = C1 + C2.
Förenklat, blir det såhär då, om jag förstått det rätt?
Parallellt: 10+10=20. Serie: 10/2=5, & 5/2=2.5 (alternativt 10/4=2.5). Tillsammans: 20+2.5=22.5
 

SM0AOM

Well-Known Member
Förenklat, blir det såhär då, om jag förstått det rätt?
Parallellt: 10+10=20. Serie: 10/2=5, & 5/2=2.5 (alternativt 10/4=2.5). Tillsammans: 20+2.5=22.5
Precis.

Avsikten bakom frågan är att få studenten att visa att dessa moment är förstådda och kan tillämpas:

- Att parallellkoppling av flera kondensatorer ökar värdet, till skillnad mot motstånd och induktanser där det istället minskar

- Att man kan få fram önskat värde genom att göra en eller flera serie/parallell-kombinationer av komponenter

- Att parallellkoppling respektive seriekoppling av komponenter med lika värden leder
till att värdet multipliceras respektive divideras med antalet när det gäller kondensatorer, men omvänt när det gäller motstånd och induktanser.


Varför det är så har med energiprincipen, lagen om bevarande av elektrisk laddning och Kirchhoffs lagar att göra, men faller lite utanför ämnet.
 

SM0UAN

Well-Known Member
Seriekopplingen är ju det knepigare fallet rent formelmässigt. Över bråkstrecket står C1 x C2, som blir 100 (10 x 10 = 100) och under bråkstrecket står C1 + C2, som blir 20 (10 + 10 = 20). 100/20 = 5. Sedan har man ju ytterligare två 10 µF kondingar i en ny tvågrupp, som också blir 5 µF. Sen får man alltså tillämpa formeln igen för att komma till 2,5 µF. [(5 x 5)/5 + 5) = 25/10 = 2,5]. Vid samma värden på bägge komponenterna blir det ju en halvering, men för alla andra värden lär man göra uträkningen för att få rätt värde.
 
Precis.

Avsikten bakom frågan är att få studenten att visa att dessa moment är förstådda och kan tillämpas:

- Att parallellkoppling av flera kondensatorer ökar värdet, till skillnad mot motstånd och induktanser där det istället minskar

- Att man kan få fram önskat värde genom att göra en eller flera serie/parallell-kombinationer av komponenter

- Att parallellkoppling respektive seriekoppling av komponenter med lika värden leder
till att värdet multipliceras respektive divideras med antalet när det gäller kondensatorer, men omvänt när det gäller motstånd och induktanser.


Varför det är så har med energiprincipen, lagen om bevarande av elektrisk laddning och Kirchhoffs lagar att göra, men faller lite utanför ämnet.
Nu blev det tydligare för mig. Tack!
 
Seriekopplingen är ju det knepigare fallet rent formelmässigt. Över bråkstrecket står C1 x C2, som blir 100 (10 x 10 = 100) och under bråkstrecket står C1 + C2, som blir 20 (10 + 10 = 20). 100/20 = 5. Sedan har man ju ytterligare två 10 µF kondingar i en ny tvågrupp, som också blir 5 µF. Sen får man alltså tillämpa formeln igen för att komma till 2,5 µF. [(5 x 5)/5 + 5) = 25/10 = 2,5]. Vid samma värden på bägge komponenterna blir det ju en halvering, men för alla andra värden lär man göra uträkningen för att få rätt värde.
Det där förstod jag ju faktiskt nu. Bitarna börja falla på plats. Tack!
 

SA0BUX

Old Member
För parallellkoppling av motstånd och seriekoppling av kondensatorer brukar jag använda den mera generella formeln
som klarar mer än två komponenter.

1666436275654.png

1666436091099.png
 

Attachments

  • 1666436260403.png
    1666436260403.png
    1.9 KB · Views: 0
Top